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Abstract
To date there have been few attempts to calculate bulk properties such as
the cohesive energy or the bulk modulus of metals using Monte Carlo (MC)
methods. We present a variational MC calculation for aluminium and find
that methods used to deal with finite-size effects work just as well as for
insulators, despite the presence of a Fermi surface. However, the large statistical
uncertainties are a problem when evaluating the bulk modulus.

1. Introduction

Two common methods used for numerical ab initio calculations of the bulk modulus, lattice
constant and cohesive energy of solids are density functional theory (DFT), often within the
local density approximation (LDA), and Monte Carlo (MC) calculations such as variational
Monte Carlo (VMC) and diffusion Monte Carlo (DMC). The latter are usually based on DFT
Kohn–Sham orbitals. To date, there have been few published MC studies of metals (see
for example [1] and [2]). In this paper we present LDA and VMC calculations of bulk fcc
aluminium, the aim being to test the applicability to metals of standard methods used to tackle
the unavoidable finite-size errors in MC simulations.

It has been suggested that, for metals, MC methods might be inadequate, due to the
computational difficulty of dealing with large simulation cells (equivalent to dense k-point
grids in DFT), which one might think are necessary in order to sample the partially filled
bands of a metal accurately. Reassuringly, however, we find that VMC is no less accurate for
aluminium than for some typical non-metallic substances. Unfortunately, as is also the case
for insulators, statistical noise causes major problems when evaluating the bulk modulus.

This paper is organized as follows. Section 2 gives a brief recap of some bulk properties
and their measured values. Computational issues are discussed in section 3, in section 4 we
present our results and section 5 concludes the paper.
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2. The bulk modulus, the lattice parameter and the cohesive energy

2.1. Definitions

For an fcc lattice and a given equation of state (EOS), which expresses the energy E as a
function of the lattice parameter a or volume V = 1

4 a3, the bulk modulus B is defined by the
equation

B = V
∂2 E

∂V 2
= 4

9a

∂2 E

∂a2
(2.1)

evaluated at the minimum.
The position of the minimum of the EOS defines the equilibrium lattice parameter and

unit-cell volume at zero pressure. The cohesive energy is then the difference between the
energy per atom of the bulk material at equilibrium and the energy of a free atom in its ground
state.

2.2. Experimental data

Electronic structure calculations yield the energy of a system where the nuclei are frozen
point-like particles. In reality, however, the nuclei, like electrons, are quantum mechanical
objects. The effects of quantum mechanics on the nuclei are normally quite small, but need
to be taken into account, at least approximately, when accurate results are required. Recently,
such calculations have been performed within the quasi-harmonic approximation (see [3, 4]),
which necessitates the evaluation of the entire phonon spectrum. This is a rather complex task
and is currently impossible within an MC context owing to the fact that effective MC system
sizes cannot be made bigger than a few unit cells using today’s computers. This limitation
of the system size limits the wavelengths of the phonons that can be studied. An alternative
method is to use the Debye temperature, �D , to estimate the phonon contribution. We can
then derive adjusted experimental values which are directly comparable to standard electronic
structure calculations.

In the case of aluminium, the energy per atom, ζz , of the phonon ground state can
be estimated within the Debye theory: ζz = 9

8 kB�D . If we subtract this value from the
experimental value we get a number directly comparable to results from standard electronic
structure calculations. We take the exact zero-temperature cohesive energy to be 3.39 eV, as
given by Kittel [5], and adjust it using a value [6] of �D = 428 K. A similar approach [7, 8]
yields comparable values for the bulk modulus and the lattice parameter. Table 1 shows the
unadjusted and adjusted experimental data.

3. Computational implementation

3.1. The atomic LDA calculation and the pseudopotential

A code written by Fuchs et al [9] was used to carry out the full-core atomic density functional
calculation within the local spin density approximation (LSDA) [10] and included relativistic
effects within a scalar-relativistic approximation [9, 11]. The Kohn–Sham equation was solved
iteratively on a logarithmic radial mesh defined by the starting value 4.807 69 × 10−4 Hartree
atomic units (au) and the scale factor 1.0247, using 493 grid points giving a cut-off distance
of about 80 au.

As it is not practical to compute the energy of a solid of full-core 13-electron atoms, we
used a non-local norm-conserving pseudopotential based on the atomic orbitals with angular
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momentum components l = 0, 1, 2. The use of pseudopotentials improves computational
efficiency and, in addition, reduces the signal-to-noise ratio in the MC calculation. We used
the Hamann [12] algorithm for the generation of the pseudopotential.

3.2. The bulk LDA calculation

Since we used the bulk LDA calculations as an input for the VMC study, it was important to
choose a k-point sampling mesh that was consistent with the MC simulation cell. Moreover,
as we wanted to build a real trial wavefunction from the orbitals, we had to use a grid with an
offset from the origin of half a reciprocal lattice vector. The choice of this offset can strongly
affect the convergence rates of both the LDA and VMC energies as functions of the size of
the simulation cell. Work on insulators by Rajagopal et al [13] has found that particularly
good results are obtained when the k-point offset, expressed in terms of the basis vectors of
the reciprocal lattice, is equal to (0.5, 0.5, 0.5). Our investigations have confirmed that this
is also a good choice for aluminium. The k-point grids we used are closely related to those
introduced by Monkhorst and Pack [13–15].

To perform these LDA calculations we used the code of Boeckstedte et al [16] where
the plane-wave cut-off was 20 Ryd and the parametrization of the LDA was that obtained by
Perdew and Zunger [17]. The grid corresponded to a 10 × 10 × 10 fcc superlattice.

3.3. The VMC calculation

As an input to the VMC calculations we used the LDA orbitals of the pseudo-atom and pseudo-
solid respectively. The VMC trial wavefunction was based on a homogeneous Jastrow factor
of the form described in Williamson et al [18] with parametrized one- and two-body terms with
16 parameters each, which we converged using several variance minimization runs. Depending
on the system size, the MC calculations used between 104 and 105 configurations of all the
electrons.

To reduce finite-size effects we used the model periodic Coulomb (MPC)
interaction [19, 20] (see also figure 1). In addition, we estimated the orbital intrinsic finite-size
effects by looking at the trends in the LDA energies as the system size was increased. For
example, from the VMC energy for the 3 × 3 × 3 system, we subtracted the difference in LDA
energy between the 3 × 3 × 3 and 10 × 10 × 10 systems, tacitly assuming that the latter was
sufficiently converged. Figure 1 gives the trends of the VMC energy for increasing system
size. Note that by construction MPC and Ewald data agree for infinite systems. In fact, for
the 4 × 4 × 4 system, they differ by between one and two standard deviations only. This, plus
the reasonable assumption of monotonic convergence, and the fact that the more reliable MPC
data changes insignificantly anyway, suggests that the MPC result for the 4 × 4 × 4 system is
sufficiently converged.

One important question regarding MC calculations of metals is what to do about partially
filled orbitals. A typical structure of the Kohn–Sham energies at various k-points in a 2 × 2 × 2
system is shown in figure 2. This system contains eight three-electron pseudo-atoms, making
24 electrons in total. We see that in the ground state there are twelve orbitals at E3 but only
eight electrons to fill these. In DFT this discrepancy is overcome by including a factor of 2

3
whenever the orbitals at E3 are used to calculate the energy or density. In contrast, MC orbitals
have to be fully occupied or empty. When dealing with jellium, technically also a metal, the
problem of partially occupied orbitals is ‘solved’ by choosing the system size carefully such
that for a given density all degenerate electron levels are occupied (‘filling a star’). Effectively,
such a jellium system is then no longer a metal; it becomes a semiconductor with a small gap.
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Figure 1. The convergence of the energy (eV per unit cell) as the system size is increased from a
2 × 2 × 2 to a 4 × 4 × 4 super-cell geometry. The data have been corrected for a possible LDA
trend and both results using standard Ewald and the MPC interactions are shown.

Figure 2. The Kohn–Sham energies at the eight k-points that correspond to a 2 × 2 ×2 system.
The degeneracies are due to symmetry and each orbital can at most hold two electrons indicated
by the upward-pointing and downward-pointing arrows. The distribution of the electrons shown
here is a system intermediate between a fully polarized and an unpolarized system. The energies
are E1 = −3.996 eV, E2 = 0.439 eV, E3 = 4.749 eV and E4 = 8.961 eV.

In real solids, however, where the geometry and electron density are given, this procedure is
no longer applicable, and we have to compare different occupation schemes, one of which is
indicated by the upward-pointing and downward-pointing arrows in figure 2. We compared
several different occupation schemes (unpolarized, fully polarized and an intermediate system)
for the degenerate one-electron orbitals at the Fermi level of the 2 × 2 × 2 system and
found, reassuringly, that although the differences between the results obtained using different
occupation schemes were statistically insignificant, a spin-unpolarized trial wavefunction
appeared to give the lowest VMC energy for bulk aluminium. The converged VMC energies
are −57.29(5) eV for the spin-unpolarized system and −57.26.(6) and −57.20.(6) eV for the
fully polarized and the intermediate system respectively.
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Table 1. The experimental values for the cohesive energy Ec (eV/atom), the equilibrium bulk
modulus B (1011 N m−2), its pressure derivative B ′ = ∂ B

∂ P (dimensionless) and the equilibrium
lattice parameter a (Å), for bulk aluminium. The values adjusted for the effect of zero-point motion
and finite-temperature effects are also given (Ec

0, B0 and a0). The LDA and VMC values of Ec
0,

B0 and a0 were estimated using a quartic fit to the calculated EOS E(a). The LDA bulk modulus
is very close to the adjusted value.

Ec B B ′ a Ec
0 B0 a0

Experiment 3.39 0.759 4.267 4.05 3.43 0.813 4.022
LDA — — 4.83 — 4.21 0.802 3.960
VMC — — 6.9(1.1) — 3.23(8) 0.65(17) 3.970(14)

4. Results

The results given in this section are compared to experimental data from which the effects of
finite temperature and zero-point motion have been subtracted [7].

4.1. Cohesive energy

The cohesive energy within the LDA is about 24% too large (see table 1), whereas the VMC
cohesive energy for aluminium understates the experimental value by 5.8%. This error is two
and a half standard deviations and is thus statistically significant, but the VMC result is clearly
much better than the LDA result. The cohesive energy was calculated at the experimentally
determined lattice parameter.

4.2. Bulk modulus and lattice parameter

We took the experimentally determined fcc crystal structure as an input and calculated the
total energy for 14 different values of the lattice parameter ranging from 0.91 to 1.06 times
the equilibrium value. When calculating the bulk modulus and lattice parameter, some care
has to be taken to ensure that the fitting is done correctly. It is important to use a sufficiently
flexible functional form for the EOS. In addition, in the case of VMC data, we have to deal with
statistical noise. Following our previous work [7] we chose a parametrized quartic polynomial
in a as the generic form of the EOS. The raw data and the fitted curves are shown in figure 3
and the values of the bulk modulus and the lattice parameter are given in table 1.

The LDA lattice constant is slightly too small, although the bulk modulus is very accurate.
This is surprising as most authors find that the LDA yields too large a bulk modulus. The better
agreement obtained here is due to the finite-temperature and zero-point corrections,which raise
the ‘ideal’ calculated bulk modulus of aluminium by 7% relative to the experimental value.

Can we use VMC to improve on these LDA results, as we did for the cohesive energy?
One obvious problem, which turns out to be serious, is that, unlike the LDA energies, the VMC
energies are noisy.

Looking at table 1, we see that the calculated lattice parameter is slightly more accurate
than the LDA value, but the calculated bulk modulus appears somewhat worse. This ‘poor’
result for the bulk modulus is, however, within a standard deviation of the ideal value. In
contrast to the VMC bulk modulus, which is underestimated, B ′ is overestimated. This is
consistent, as the true VMC EOS is unlikely to differ considerably from the DFT EOS. If the
estimated VMC curvature at the minimum is much smaller than its DFT counterpart, the VMC
curvature has to change more rapidly than for DFT. Since the curvature is the main ingredient
of the bulk modulus, the same will hold for B ′.
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Figure 3. LDA and VMC data for E(a) fitted to a quartic polynomial. Raw VMC data including
error bars are also given. Note that on the resolution of this figure the raw LDA data (not shown,
evaluated at the same points as the VMC data) are in fact indistinguishable from the fitted curve.
Also, of 16 VMC data points (�a = 0 has been evaluated three times), 4 or 5 are more than one
standard deviation removed from the fitted curve, implying that the fit is consistent with the VMC
errors.

We regard it as unlikely that the VMC method actually gives worse results than the LDA,
especially as the LDA orbitals are used as input to the VMC calculations. We believe, therefore,
that a reduction of the statistical error, e.g., by using correlated sampling [21], is necessary to
obtain more accurate VMC results.

5. Conclusions

The presence of a Fermi surface, and the inability to sample it well in MC simulations with small
simulation cells (corresponding to coarse meshes of k-points), do not limit the applicability of
standard MC methods in the studies of metals. This might seem surprising at first. However,
one must not forget that we apply to the MC results a DFT-based finite-size correction that
takes account of the change in DFT total energy as the density of the DFT k-point sampling
mesh is increased. This deals with the one-body contributions to the MC finite-size error.
The MC method treats the many-body correlation energy explicitly in real space by modelling
the exchange–correlation hole using a Jastrow factor. Since the hole is fairly short ranged,
we expect the exchange–correlation energy to converge rapidly as the size of the simulation
cell is increased. The many-body finite-size error is therefore small. The largest remaining
finite-size error arises from spurious interactions between the periodically repeated copies of
the exchange–correlation hole. This error is adequately dealt with using the MPC interaction.

There is the usual limitation due to the statistical nature of MC calculations. Since energy
derivatives such as the bulk modulus are very susceptible to noise in the data, the statistical
nature of the MC method makes accurate MC calculations of bulk moduli difficult. This
limitation applies in metallic and insulating systems.

In contrast to much previous work, ours finds that the LDA produces a very accurate
value for the bulk modulus of Al. The accuracy of our result can be attributed to the inclusion
of finite-temperature and zero-point motion effects. For aluminium, these effects imply that



Ab initio calculations of the cohesive energy and the bulk modulus of aluminium 8793

the calculated bulk modulus ought to be approximately 7% greater than the measured value,
explaining the apparent overestimation of the bulk modulus obtained by other authors [22, 23].
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